104 research outputs found

    Veteran trees in decline: Stratified national monitoring of oaks in Norway

    Get PDF
    Old veteran trees function as biodiversity hotspots in both forests and open landscapes, and protecting such trees is an important measure to halt loss of biodiversity. Nevertheless, the number of veteran trees continues to decline worldwide, although estimates of this decline mainly stem from geographically restricted case studies. In Norway, veteran oak trees have received special protection since 2011 through the Norwegian Biodiversity Act, however, there is a lack of knowledge on status and trends for these trees. A national monitoring program was started in 2012, using a random, stratified sampling procedure. We use the data from the baseline survey and the first monitoring revisit to estimate the total number as well as mortality trends of veteran oaks in Norway. Further, we assess recruitment potential (in the baseline survey) and changes in variables describing ecological state such as regrowth. The monitoring area covered the geographical distribution of oaks in Norway and was divided into > 200 000 plots of 500 × 500 m. A set of 500 monitoring plots were randomly selected from two strata: High probability plots (n = 100; plots with high probability of occurrence of veteran oaks), and Low probability plots (n = 400), using existing knowledge and databases. Plots were surveyed over a five year-period (2012–2016), with 20 HighProb-plots and 80 LowProb-plots each year. All veteran oaks that were observed during the baseline survey were revisited in 2019, three to seven years after they were initially registered. Tree absence and cause of death/ change of ecological status was recorded. We estimated a total of 138 100 veteran oaks in Norway based on the baseline survey, of which 25 000 could be denoted “top quality oaks”. Based on the revisit, we estimated a loss of 7 600 veteran trees, i.e., an annual mortality rate of 1.2%. Recruitment oaks were present in most plots with veteran oaks, but recruitment into the veteran oak category is slow and unlikely to balance out the mortality rate. More precise estimates of recruitment should be prioritized in future monitoring. The estimate of 138 000 veteran oaks far exceeds the appr. 10 000 trees registered in the national database, and clearly demonstrates the need for continued mapping and monitoring to improve the foundation for a knowledge-based land management. Further, this short-term monitoring demonstrates the decline of this biodiversity hotspot and pivotal source of ecosystem functions, despite increased protection in recent years. Our results and conclusions are relevant also for veteran trees of other species than oak. Quercus Ancient tree Tree inventory Monitoring Annual decline Biodiversity hotspot Heritage treespublishedVersio

    Identifying climate thresholds for dominant natural vegetation types at the global scale using machine learning : Average climate versus extremes

    Get PDF
    The global distribution of vegetation is largely determined by climatic conditions and feeds back into the climate system. To predict future vegetation changes in response to climate change, it is crucial to identify and understand key patterns and processes that couple vegetation and climate. Dynamic global vegetation models (DGVMs) have been widely applied to describe the distribution of vegetation types and their future dynamics in response to climate change. As a process-based approach, it partly relies on hard-coded climate thresholds to constrain the distribution of vegetation. What thresholds to implement in DGVMs and how to replace them with more process-based descriptions remain among the major challenges. In this study, we employ machine learning using decision trees to extract large-scale relationships between the global distribution of vegetation and climatic characteristics from remotely sensed vegetation and climate data. We analyse how the dominant vegetation types are linked to climate extremes as compared to seasonally or annually averaged climatic conditions. The results show that climate extremes allow us to describe the distribution and eco-climatological space of the vegetation types more accurately than the averaged climate variables, especially those types which occupy small territories in a relatively homogeneous ecological space. Future predicted vegetation changes using both climate extremes and averaged climate variables are less prominent than that predicted by averaged climate variables and are in better agreement with those of DGVMs, further indicating the importance of climate extremes in determining geographic distributions of different vegetation types. We found that the temperature thresholds for vegetation types (e.g. grass and open shrubland) in cold environments vary with moisture conditions. The coldest daily maximum temperature (extreme cold day) is particularly important for separating many different vegetation types. These findings highlight the need for a more explicit representation of the impacts of climate extremes on vegetation in DGVMs.Peer reviewe

    Presence-absence of plant habitat specialists in 15 patches of dry calcareous grassland

    Get PDF
    Background Dry grasslands on calcareous bedrock in warm climates around the Oslo Fjord are naturally fragmented biodiversity hotspots. This habitat geographically coincides with the most densely populated area of Norway. Many habitat specialists, along with the habitat itself, are red-listed because of land-use change, forest encroachment, and invasive species that cause habitat loss and greater isolation of remaining patches. To ensure effective conservation, data on species presences and absences are necessary to quantify states, changes, and extinction risks in specific populations and habitat patches. New information We present presence-absence data of 49 vascular plant species in 15 patches of dry calcareous grassland habitat, surveyed in 2009, 2019, and in 2020. The species are considered to be habitat specialists and, thus, unlikely to occur between the patches. sampling-event, vascular plants, specialist species, presence-absence data, calcareous grassland, habitat patch, GBIFpublishedVersio

    Choosy beetles : How host trees and southern boreal forest naturalness may determine dead wood beetle communities

    Get PDF
    Wood-living beetles make up a large proportion of forest biodiversity and contribute to important ecosystem services, including decomposition. Beetle communities in managed southern boreal forests are less species rich than in natural and near-natural forest stands. In addition, many beetle species rely primarily on specific tree species. Yet, the associations between individual beetle species, forest management category, and tree species are seldom quantified, even for red-listed beetles. We compiled a beetle capture dataset from flight intercept traps placed on Norway spruce (Picea abies), oak (Quercus sp.), and Eurasian aspen (Populus tremulae) trees in 413 sites in mature managed forest, near-natural forest, and clear-cuts in southeastern Norway. We used joint species distribution models to estimate the strength of associations for 368 saproxylic beetle species (including 20 vulnerable, endangered, or critical red-listed species) for each forest management category and tree species. Tree species on which traps were mounted had the largest effect on beetle communities; oaks had the most highly associated beetle species, including most of the red-listed species, followed by Norway spruce and Eurasian aspen. Most beetle species were more likely to be captured in near-natural than in mature managed forest. Our estimated associations were compatible ? for many species ? with categorical classifications found in several existing databases of saproxylic beetle preferences. These quantitative beetle-habitat associations will improve future analyses that have typically relied on categorical classifications. Our results highlight the need to prioritize conservation of near-natural forests and oak trees in Scandinavia to protect the habitat of many red-listed species in particular. Furthermore, we underline the importance of carefully considering the species of trees on which traps are mounted in order to representatively sample beetle communities in forest stands.Peer reviewe

    Functional structure of European forest beetle communities is enhanced by rare species

    Get PDF
    Biodiverse communities have been shown to sustain high levels of multifunctionality and thus a loss of species likely negatively impacts ecosystem functions. For most taxa, however, roles of individual species are poorly known. Rare species, often most likely to go extinct, may have unique traits and functional roles. Alternatively, rare species may be functionally redundant, such that their loss would not disrupt ecosystem functions. We quantified the functional role of rare species by using captures of wood-living (saproxylic) beetle species, combined with recent databases of morphological and ecological traits, from three regions in central and northern Europe. Using a rarity index based on species' local abundance, geographic range, and habitat breadth, we used local and regional species removal simulations to examine the contributions of both the rarest and the most common beetle species to three measures of community functional structure: functional richness, functional specialization, and functional originality. Both regionally and locally, all three measures declined more rapidly when rare species were removed than under common (or random) species removal scenarios. These consistent patterns across scales and among forest types give evidence that rare species provide unique functional contributions, and their loss may disproportionately impact ecosystem functions. This implies that conservation measures targeting rare and endangered species, such as preserving intact forests with dead wood and mature trees, can provide broader ecosystem-level benefits. Experimental research linking functional structure to ecosystem processes should be prioritized to increase understanding of the functional consequences of species loss and to develop more effective conservation strategies

    Traits mediate niches and co-occurrences of forest beetles in ways that differ among bioclimatic regions

    Get PDF
    Aim The aim of this study was to investigate the role of traits in beetle community assembly and test for consistency in these effects among several bioclimatic regions. We asked (1) whether traits predicted species' responses to environmental gradients (i.e. their niches), (2) whether these same traits could predict co-occurrence patterns and (3) how consistent were niches and the role of traits among study regions. Location Boreal forests in Norway and Finland, temperate forests in Germany. Taxon Wood-living (saproxylic) beetles. Methods We compiled capture records of 468 wood-living beetle species from the three regions, along with nine morphological and ecological species traits. Eight climatic and forest covariates were also collected. We used Bayesian hierarchical joint species distribution models to estimate the influence of traits and phylogeny on species' niches. We also tested for correlations between species associations and trait similarity. Finally, we compared species niches and the effects of traits among study regions. Results Traits explained some of the variability in species' niches, but their effects differed among study regions. However, substantial phylogenetic signal in species niches implies that unmeasured but phylogenetically structured traits have a stronger effect. Degree of trait similarity was correlated with species associations but depended idiosyncratically on the trait and region. Species niches were much more consistent-widespread taxa often responded similarly to an environmental gradient in each region. Main conclusions The inconsistent effects of traits among regions limit their current use in understanding beetle community assembly. Phylogenetic signal in niches, however, implies that better predictive traits can eventually be identified. Consistency of species niches among regions means niches may remain relatively stable under future climate and land use changes; this lends credibility to predictive distribution models based on future climate projections but may imply that species' scope for short-term adaptation is limited.Peer reviewe

    A Unifying Gravity Framework for Dispersal

    Get PDF
    Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics

    A Unifying Gravity Framework for Dispersal

    Get PDF
    Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics

    What explains inconsistencies in field-based ecosystem mapping?

    Get PDF
    Questions: Field-based ecosystem mapping is prone to observer bias, typically resulting in a mismatch between maps made by different mappers, that is, inconsistency. Experimental studies testing the influence of site, mapping scale, and differences in experience level on inconsistency in field-based ecosystem mapping are lacking. Here, we study how inconsistencies in field-based ecosystem maps depend on these factors. Location: Iškoras and Guollemuorsuolu, northeastern Norway, and Landsvik and Lygra, western Norway. Methods: In a balanced experiment, four sites were field-mapped wall-to- wall to scales 1:5000 and 1:20,000 by 12 mappers, representing three experience levels. Thematic inconsistency was calculated by overlay analysis of map pairs from the same site, mapped to the same scale. We tested for significant differences between sites, scales, and experience-level groups. Principal components analysis was used in an analysis of additional map inconsistencies and their relationships with site, scale and differences in experience level and time consumption were analysed with redundancy analysis. Results: On average, thematic inconsistency was 51%. The most important predictor for thematic inconsistency, and for all map inconsistencies, was site. Scale and its interaction with site predicted map inconsistencies, but only the latter were important for thematic inconsistency. The only experience-level group that differed significantly from the mean thematic inconsistency was that of the most experienced mappers, with nine percentage points. Experience had no significant effect on map inconsistency as a whole. Conclusion: Thematic inconsistency was high for all but the dominant thematic units, with potentially adverse consequences for mapping ecosystems that are fragmented or have low coverage. Interactions between site and mapping system properties are considered the main reasons why no relationships between scale and thematic inconsistency were observed. More controlled experiments are needed to quantify the effect of other factors on inconsistency in field-based mapping. classification, experience, field-based mapping, GIS, inter-observer variation, land-cover mapping, landscape metrics, ordination, scale, vegetation mappingpublishedVersio
    corecore